
Using the World Wide Web to Provide a
Platf orm Independent Interface to High

Performance Computing

David W. Robertson and William E. Johnston1

Lawrence Berkeley Laboratory, 1 Cyclotron Road

Berkeley, CA 94720

Abstract

We have developed1 a set of techniques for providing
interactive 3D graphics via the World Wide Web (WWW)
as part of the “Whole Frog” project[1]. The success of
this project indicates that the Web and its associated
browsers can serve as an easily used and powerful fr ont
end to high-performance computing resources.
We utilize the Common Gateway Interface capability of
WWW servers to provide an interactive 3D visualization
front end through Web clients. These techniques have been
used to make a “Virtual Frog Dissection Kit”, available as
http://www-itg.lbl.gov/vfrog. A student using this Kit has
the ability to view various parts of a frog from many
different angles, and with the different anatomical
structures visible or invisible (Figure 1).

1.0 Intr oduction

This paper describes work demonstrating the potential of
the World Wide Web architecture to provide a uniform
interface to high-performance computing applications.
The back end computation can take place on as complex
and powerful a distributed system as needed to support the
information display on the front end. All of this is hidden
from the user, and the front end is the same Web browser
(e.g. Univ. of Illinois’ Mosaic, or Netscape Communica-
tions Corp.’s Netscape Navigator) used to access many
other kinds of information.

1. This work is supported by the U. S. Dept. of Energy, Energy Research
Division, Office of ScientiÞc Computing, under contract DE-AC03-
76SF00098 with the University of California. The authors may be
reached as davidr@george.lbl.gov and wejohnston@lbl.gov. This is
report LBL-36657.

Use of the Web provides a platform-independent interface
to applications. Browsers (Web front ends) are available
for use with most common operating systems and window
systems (UNIX, X-Windows, PCs, Macs etc.). The Web
support of interactive input from browsers (via “forms”)
provides a significant subset of the functionality included
in Graphical User Interfaces (GUIs) such as X Windows
“toolkits”.

The Web's design ([2], [3]) has proven very versatile, pro-
viding for a variety of high-level functions. These include:
(1) publishing research results from high-performance
computing, including interactive exploration of the data
and methods used; (2) support of education by providing
access to activities that are too computationally expensive
for most secondary school resources, and; (3) mechanisms
for collaboration and sharing possibly scarce and expen-
sive remote experimental facilities.

We have used scientiÞc visualization as a sample high-per-
formance application for the development and demonstra-
tion of Web capabilities to support front ends for
distributed processes. We also hope to provide an example
of ways that Web based user interfaces to scientific analy-
sis and simulation codes can be built.

The use of visualization in conjunction with the Web
means that end users of scientiÞc visualization do not nec-
essarily require high-performance rendering systems at
their location, and can use a variety of personal computers
and workstations. One of the primary goals of the “Whole
Frog” project is to enable K-12 students in particular to
learn about and use scientific visualization (and frog anat-
omy), and to find out about high-performance computing
and networking.

Presented at IEEE Compcon 1995

The problem that we have selected as representative of
many kinds of scientific visualization is that of visualizing
large, 3D scalar fields. The example data set is a finely
sampled 3D colored grid of the volume of a frog. The data
is characterized by having significant internal surfaces (the
anatomical organ boundaries).

In addition to exploring the interactive capabilities of the
Web architecture, we are also presented with an interesting
exercise in how to provide (experimentally) a computa-
tionally intense service to a large number of users with
resources that are simultaneously (and primarily) used for
other purposes. For example, the experimental package
being described here - the Virtual Dissection Kit - has
been accessed by 50,000 different sites, in over 50 differ-
ent countries in the past 7 months. The generation of the
nearly 200,000 rendered images satisfying these requests
has been done on four or five large-ish Unix workstations
on a non-interfering basis.

The number of accesses to a WWW page (an individual
Web document) used for publication or education can vary
considerably, depending, for example, on how much
media attention it is receiving at any particular moment.
Unless access to a page is restricted, the HTTP server (the
system that receives and processes requests from Web
browsers) must be prepared to handle a potentially large
number of accesses per minute. If a page’s intended use is
interactive visualization, then long waits for an image are
not acceptable. Given these considerations, one of our
principal design goals was to have all of the rendered
images of the frog available in a few seconds, or less, after
the user interaction.

2.0 The Process of Visualization

There are a variety of ways in which 3D scalar fields can
arise in math, science, and many other fields. They are
trivially generated by evaluating a 3D function on a grid -
a process that can lead to complex data sets and visualiza-
tions (see, for example [4]). 3D scalar fields also arise
from various types of reconstruction problems that result
in serial sections (e.g. tomography). In this case we
obtained a data set from sectioning the body of a frog.

Obtaining a 3D data set that represents the internal struc-
tures of an animal starts with building a voxel data set
(voxels are small cubes - the 3D equivalent of pixels) that
can be used as input for surface and/or volume rendering
software. Generation of this data set for a frog required
mechanical sectioning: magnetic resonance imaging did
not provide sufficient resolution, due to differences

between mammalian and amphibian physiology. Each 125
micron slice was photographed and digitized, thereby pro-
viding a representation of the frog internals as roughly
10,000,000 tiny volume elements. Subsequently, semi-
automatic segmentation (isolation and identification of
structure boundaries) provided a “mask” representing each
organ. The details of these techniques are available in the
Whole Frog Technical Report [5].

Visualization of 3D scalar fields is typically done by “vol-
ume rendering” or “surface rendering.” Volume rendering
is a process that treats the voxels as transparent and counts
up the contribution of all voxels in the line of sight. This
type of visualization is computationally expensive, and
works best with a display system supporting a very large
color space (e.g. a 24 bit, RGB frame buffer). Surface ren-
dering treats contours as “real” surfaces (e.g. represented
as a polygonal mesh) and renders these surfaces accord-
ingly. The rendering process is much faster, color resolu-
tion is not quite so critical, but the generation of the mesh
representing the contour surface is still expensive. One of
the optimizations in the Virtual Dissection Kit, in anticipa-
tion of heavy use, is that the contours are pre-computed,
leaving only the rendering of the 3D object for responding
to interactive requests. (That is, multiple objects and a
viewing angle can be selected via the Web interface.) The
masks mentioned above are the first step in generating a
contour surface representation. The masks are converted to
the voxel lists that define a contour surface by enumerating
its intersection with the volume. We use this representation
of the contour surface for rendering.

This approach of fixing the contour surfaces is reasonable
for visualizing a frog, but may not be reasonable for a
mathematical function or real-world data set where the
structure is not well defined or known in advance. There is
no reason that a general contouring capability could not be
added to the Dissection Kit - it is only a question of sup-
porting the computational load that such a capability
would generate.

Given the frog volume data and organ masks, an interme-
diary list of voxels representing the frog was produced
using the Dividing Cubes method [6] for 3D surface gen-
eration. This method has been modified by using mask
values instead of algorithmic thresholding to identify the
voxels that will be utilized in the surface generation step.
The modified Dividing Cubes algorithm is used separately
on each organ mask, resulting in lists of voxels for each
organ. The surface normal vectors (needed for computing
the color of a voxel given its original color, and the view-
ing angle and lighting conditions for the particular viewing

specified by the user interaction) are similarly pre-gener-
ated and stored in this list.

The resulting list contains approximately 450,000 - 3D
points representing the surfaces of the frog organs. If an
organ is not selected for viewing, its portion of the point
list is skipped. Rendering, that is, producing a 2D image
representing the projection onto the screen of the 3D
objects that are selected for display, is straightforward by
using a z-buffer for hidden surface removal [7]. The alter-
native of rendering all images beforehand is not feasible
due to the number of possible images (over a million when
all possible views and all possible combinations of organs
are taken into account).

Images are compressed before being sent back to a user.
Since a typical frog image contains a high proportion of
constant background, especially if only a few organs are
selected, the GIF method of encoding [8] used by the

HTTP protocol typically provides a compression ratio of
at least 4:1.

Even with this form of compression the amount of image
data to be sent can be up to 60 kilobytes, which takes
about sixty seconds using a 9600 baud modem. With this
in mind, a forms parameter on the Web page can be set to
generate images of three different screen sizes (205 x 205,
304 x 304, and 480 x 480) resulting in transmitted image
files of 5 kilobytes for those with slower connections, up
to 20 kilobytes for normal use, and up to 60 kilobytes for
high quality.

The use of point (voxel) primitives and previously gener-
ated normals results in rapid image generation (one second
or less for the standard-sized image using a typical Unix
workstation as the rendering server) with a good level of
detail. This approach, in combination with the image-size
options, meets the requirements mentioned above for rapid

Figure 1 - Screen Dump Showing Rendered Image and Interaction Mechanisms

turnaround between a forms submission and return of the
viewable image.

3.0 The WWW Forms Interface

The Web provides mechanisms to allow links from one
document to other text, audio, image and movie docu-
ments residing anywhere on the Web. In addition, the
“forms” capability provides such GUI features as text
input, and checkboxes and menus for selection among
enumerated choices. User interaction is also possible
through clicking on images in the document (which
returns the x and y location of the pointer in that image)
providing the mechanism for functions such as rotation
and graphical object selection. Taken together, these capa-
bilities are a powerful means of allowing interactive user
input and data exploration.

Figure 1 shows the forms interface for the Virtual Dissec-
tion Kit, with a rendered image of the frog. This interface
provides three ways for the user to interactively control the
graphical display and learn about frog anatomy: control-
ling which organs (objects) are visible, controlling the
angle from which to view the frog, and using a mode of
interaction that brings up brief descriptions of the organs
seen in the image. In Figure 1 the first two of these options
have been exercised to produce the image. A separate
paper [9] describes the “Virtual Dissection Kit’s” interface
in detail.

A user sets forms parameters and then submits them to the
HTTP server. The Common Gateway Interface (CGI) pro-
vides a means to run a program from the HTTP server that
handles the forms submission, performs the appropriate
action, such as rendering an image, and returns the result-
ing document back to the client. This document can be
anything that can be written in the Web’s Hypertext Mark-
up Language (HTML).

In the case of the Virtual Dissection Kit, the document
returned gives the appearance of a screen in which the
only change is in the “window” containing the image of
the frog. This is accomplished by returning the HTML
document creating the screen that appeared before form
submission, updated with a pointer to the new rendered
image, and with the latest form settings.

As an example of the flexibility provided by forms, a menu
setting in the Kit interface indicates to the CGI script that
it should return a form document that is a translation of the
user interface into a different language (the Virtual Frog
Dissection page is currently available in English, Spanish,

French, Dutch, and German). A user can also click on an
organ in the rendered frog image and discover its name
and function, which are returned as text. In general, the
provider of information and research results has wide lee-
way in allowing user interaction and exploration, and in
formulating a response, since documents can be generated
on the fly.

4.0 The Virtual Dissection Kit
Architecture

When a user submits a form from the client, the form set-
tings are passed over the network to the HTTP server, and
then to a CGI script. The script parses the incoming data
and sends the result to an already running process (server)
on a different machine. The load on the HTTP server sys-
tem is minimal; most of the computation is performed on
the rendering server.

In the event of multiple accesses, the load is further spread
out by having several (currently five in the case of the Frog
Dissection Kit) different systems available for graphics
rendering. One of these systems is chosen at random to
perform the rendering, which takes about a second for the
standard image size. There has not been a noticeable
impact on the performance of these systems, which are
regularly used for other purposes by our group (during
peak periods in December 1994, there were up to 12
accesses per minute that caused image rendering).

The rendering server generates an image from the data list
representing the frog. The data list, consisting of points
and associated surface normals, is about 5 megabytes. It is
loaded once upon the instantiation of a rendering process,
and is thus always mapped in memory.

After the image is generated by the 3D rendering, it is GIF
encoded and written to a temporary file. The CGI script
rewrites the Web page with the new forms settings and the
location of the image file in HTML format to standard out-
put, where it is intercepted by the HTTP daemon and sent
back to the client. Before writing the form settings out, the
script checks to see if any of them have changed during the
current invocation, as a result of rendering or other
actions, and updates them as necessary.

5.0 Conclusions

The World Wide Web model provides a flexible and pow-
erful method for providing access to documents and data,

and resources such as high-performance computing. The
availability of Web browsers for the most common plat-
forms and the presence of the Web throughout the world
ensure very wide dissemination of information.

The ease of use of Web development tools has enabled the
implementation of a distributed system such as the Virtual
Dissection Kit as an information server. Computational
resources are extended beyond the machine running the
HTTP server by using Unix interprocess communication
mechanisms for communication with rendering servers on
other machines.

The Virtual Dissection Kit is an example of how scientific
visualization in particular can be made available over the
Web. It provides a capability for students that typically
would be too computationally expensive to provide at a
school site. An alternative to the dissection of a real frog, it
also adds new capabilities such as un-dissection. The spa-
tial relationships of organs to each other are easily seen, in
combinations that would not be realizable in a real dissec-
tion. Future plans include techniques to build movie
sequences on the fly (based on user input) to better visual-
ize 3D relationships among organs; a virtual cutting tool;
and finding mirror sites in places such as Europe, where
the connectivity to LBL is slow.

Visualization using the Kit requires substantial use of
computing power and memory resources. Providing this
without causing an undue load on our site was made possi-
ble by distributing the task between the HTTP server and
the rendering server, and having a pool of machines avail-
able for rendering. In general, a well-equipped facility can
provide services such as the Kit on a non-interfering basis
by spreading the load among several workstations. Power-
ful workstations, and the capabilities such as visualization
that they provide, can be made much more accessible to
sites such as K-12 schools through use of the Web.

Due to their typically heavy load, use of more powerful
systems than high-end workstations for Web publication
or education may not be feasible. However, the Web offers
the potential for research collaborations using supercom-
puters and large, scarce experimental facilities. In a collab-
oration there are not nearly as many users, and access to
resources can be limited to a research group through use of
Web capabilities. An example of the use of the WWW for
such a collaboration is the Bay Area Gigabit Testbed [10],
performing research into high-speed networks.

6.0 Acknowledgments

This work was sponsored by the U. S. Dept. of Energy,
Energy Research Division, Office of Scientific Computing,
John Cavallini program manager. Several people in the
LBL Functional Imaging Group of the Life Sciences Divi-
sion, headed by Dr. Tom Budinger, were instrumental in
assisting with generating the frog data set. Several com-
puter science students, including in particular, Wing Nip,
have provided invaluable assistance, and several high
school teachers from the LBL Center for Science and
Engineering Education summer program contributed to
various aspects of the project.

7.0 References

1) Johnston, W.E. The Whole Frog Project (Web page).
http://george.lbl.gov/ITG.hm.pg.docs/Whole.Frog/
Whole.Frog.html, University of California, Lawrence
Berkeley Laboratory, Berkeley, CA (1994).

2) T.J. Berners-Lee, R. Cailliau, J-F Groff, B. Pollermann,
CERN, “World-Wide Web: The Information Uni-
verse”, published in Electronic Networking: Research,
Applications and Policy, Vol. 2 No 1, pp. 52-58 Spring
1992, Meckler Publishing, Westport, CT, USA.

3) http://www11.w3.org/hypertext/
WWW/Bibliography.html

4) G. Fischer, ed., Mathematical Models, Friedr. Vieweg
and Sohn Verlagsgesellschaft mbH, Braunschweig,
Germany (1986).

5) Nip, W. and Logan, C. “Whole Frog Technical Report.”
LBL-35331, University of California, Lawrence Ber-
keley Laboratory, Berkeley, CA (1991).

6) Cline, H.E., Lorensen, W.E., Ludke, S., Crawford, C.R.,
and Teeter, B.C. “Two algorithms for the three-dimen-
sional reconstruction of tomograms.” Medical Physics
15 3 (May/June 1988), 320-327.

7) Foley, J. D. and van Dam, A. Fundamentals of Interac-
tive Computer Graphics, 2nd ed. Addison-Wesley Pub-
lishing Company: Reading, MA (1990).

8) Graef, G. “Graphics formats: A close look at GIF, TIFF,
and other attempts at a universal image format.” Byte
14 9 (Sept. 1989), 305-310.

9) Robertson, D. W., Johnston, W.E., and Nip, W. “Virtual
Frog Dissection: Interactive 3D Graphics via the Web.”
Proceedings, The Second International WWW Confer-
ence ‘94: Mosaic and the Web, Chicago, IL (1994).

10) http://george.lbl.gov/BAGNet.html

